Fast neutron irradiation facilities in MARIA reactor

fission neutrons for fusion materials

Rafal Prokopowicz National Centre for Nuclear Research Świerk, Poland

7th Intermational Symposium on Material Testing Reactors

MARIA Research Reactor

- high neutron flux density research reactor
- water and beryllium moderated
- pool-type reactor with pressurized fuel channels
- concentric tube assemblies of fuel elements
- fuel channels in conical matrix of beryllium blocks surrounded by graphite reflector
- 30 MW of nominal thermal power
- thermal neutron flux density up to $2 \cdot 10^{14}$ cm⁻² s⁻¹
- fast neutron flux density up to 3.10¹³ cm⁻² s⁻¹
- over 4000 hours operation per year
- radioisotope production 600 TBq/year
- Mo-99 production 6000 TBq/year

MARIA reactor

MARIA reactor

1. control rod drive

- 2. mounting slab
- 3. ionisation chamber channel 4. ionisation chamber drive
- 5. slab supporting structure
- 6. slab bracket
- 7. horizontal beam slide damped drive

horizontal beam slide damper
 fuel channel
 ionization chamber shielding
 basket basis
 reflector housing
 reflector blocks
 renter blocks

Neutrons from fusion

Fusion reactor

- heat load 10 MW/m²
- temperature 4K÷800K
- fast neutron flux density
 3.10¹⁴ cm⁻² s⁻¹
- structure degrad. 3÷150 dpa

Fusion materials

- berylium (1st wall, blanket)
- lithium compounds
- tungsten (divertor)
- carbon fibre composite (divertor)
- austentic steel
- nickel alloys
- titanium alloys
- ferritic steel
- ceramics (insulators)

National Centre for Nuclear Research Structure degradation

Tritium breeding

Rafal Prokopowicz

7th ISMTR, Świerk, Poland, 20/10/2014

The 14 MeV neutreon sources

accelerator sources

solid target (ASP AWE ~2·10¹⁰ cm⁻² s⁻¹, FNG ~1·10⁹ cm⁻² s⁻¹, IFJ ~1·10⁷ cm⁻² s⁻¹)
 plasma target (GDT, Nowosybirsk)

plasma sources

- mcf – tokakak, stellarator (JET (dt) < $1 \cdot 10^{12}$ cm⁻² s⁻¹, t<10 s)

- icf (NIF 1.10⁹ cm⁻² imp⁻¹)
- z-pinch (NST DPF 1MJ (dt) ~1·10¹¹ cm⁻² imp⁻¹)
- spallation source (ISIS 3.10⁷ cm⁻² s⁻¹)
- MARIA LiD <1.10¹⁰ cm⁻² s⁻¹, 4000 h/y, 60cm³
- designed sources
 - ITER (4·10¹⁴ cm⁻² s⁻¹, t≈500 s)
 - DEMO $(1 \cdot 10^{15} \text{ cm}^{-2} \text{ s}^{-1})$
 - ESS $(1 \cdot 10^{13} \text{ cm}^{-2} \text{ s}^{-1})$
 - IFMIF (~8·10¹⁴ cm⁻² s⁻¹, 20 dpa/y, 500cm³)

 $\longrightarrow T + D \longrightarrow {}^{4}\text{He} + n_{14\text{MeV}} \quad (Q \cong 17.58 \text{ MeV})$ $\longrightarrow T + {}^{6}\text{Li} \longrightarrow {}^{8}\text{Be} + n_{14\text{MeV}} \quad (Q \cong 16.02 \text{ MeV})$

The converters "history"

- TRIGA Mark II, Kansas ${}^{6}LiOD \cdot D_{2}O$, $3 \cdot 10^{4}$ cm⁻² s⁻¹, 1976
- MURR, Missouri ${}^{6}LiOD \cdot D_{2}O$, 32 cm³, 6·10⁴ cm⁻² s⁻¹, 1982
- KUR, Kyoto ⁶LiD, 100 cm³, 3·10⁵ cm⁻² s⁻¹, 1988
- TRIGA Mark II, Wien ⁶LiD, 4·10⁸ cm⁻² s⁻¹, 1997
- IVV-2M, Zariechnyj 0.85g ⁶LiD, 1.3 cm³, 3·10¹⁰ cm⁻² s⁻¹, 2002
- MARIA, Świerk ⁶LiD+⁶LiOD·D₂O, 60 cm³, <1·10¹⁰ cm⁻² s⁻¹, 2014 10 g 55 g

The converter in MARIA reactor

- converting materials
- conversion efficiency
- geometry optimization
- neutronic calculations
- thermo-hydraulic calculations
- reactivity calculations
- safety analysis
- converter design
- converter construction
- operation procedures
- regulator permission

Converter construction

- cylindrical shape
- concentric vertical tubes
- cylindrical converting layer
 (2.5 mm thick, 35 cm high)
 surrounds container Ø18mm
- flowing down water cooling inner and outer clad
- gas expansion chamber 1.4 l

Converting materials

- ⁶LiD (10 g), ⁶LiOD·D₂O (55 g)
- conversion efficiency

Converting material	Reaction probability	
	T - D	T — ⁶ Li
⁶ LiD	1.71·10 ⁻⁴	0.84.10-4
⁶ LiOD·D ₂ O	1.28·10 ⁻⁴	0.19.10-4

- thermal neutron flux density 0.5·10¹⁴ cm⁻² s⁻¹
- 14 MeV neutron flux density 0.5·10¹⁰ cm⁻² s⁻¹

Neutronic calculations

10

Reactivity perturbation

Location	Reactivity [\$]
J-IX/A	- 0.15
J-IX/B	- 0.20
G-IV/A	- 0.10
G-IV/B	- 0.19
G-V/A	- 0.49
G-V/B	- 0.77
K-VIII/A	- 0.06

Operation conditions

- heat generation
 - cooling water heating 40°C
 - max clad temperature 100°C
 - max temp. of converting layer 320°C
- after 2800 h operation (neutron fluence 5.10²⁰ cm⁻²)
 - tritium activity 280 TBq
 - gas pressure inside converter 1.0 MPa

Testing operation

- 18/09/2014 ÷ 24/09/2014, 134.5 h
- channel K-VIII/A (reactivity -0.06\$)
- max clad temperature 80°C
- irradiated targets: steel samples, activation detectors
- thermal neutron flux density 0.5·10¹⁴ cm⁻² s⁻¹
- 14 MeV neutron flux density $\sim 0.5 \cdot 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$

Fast neutron irradiation channels

- fast neutron (Watt spc.) flux density up to 3·10¹² cm⁻² s⁻¹
- thermal neutron flux reduced down to 3.10¹⁰ cm⁻² s⁻¹
- 16 irradiation channels
 (Ø90 mm × 900 mm)
- possible irradiation of samples, apparatus, etc.

Post-irradiation examination

• 3 reactor hot cells (10¹²÷10¹⁵ Bq) with instrumentation

- 12 NCBJ Material Research Laboratory hot cells (10¹² Bq) with instrumentation
 - transport system of radioactive materials form reactor

Future prospects

- fast neutron irradiation inside purpose-build fuel element
 - fast neutron (Watt spc.) flux density over $2 \cdot 10^{14}$ cm⁻² s⁻¹
 - thermal neutron flux density up to $3 \cdot 10^{14}$ cm⁻² s⁻¹
 - channel ~Ø15÷45 mm
- out-of-reactor (on horizontal channel) thermal to 14 MeV neutron converter
 - 14 MeV neutron flux density $\sim 1.10^{6}$ cm⁻² s⁻¹, no gamma ray
 - irradiation of large size apparatus, devices, etc.,
 - operation 4000 h/year